Open Source Tools and Methods

eMeuro

Novel Tools and Methods

GhostiPy: An Efficient Signal Processing and
Spectral Analysis Toolbox for Large Data

Joshua P. Chu, and ““Caleb T. Kemere

https://doi.org/10.1523/ENEURO.0202-21.2021

Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251-1892

Abstract

Recent technological advances have enabled neural recordings consisting of hundreds to thousands of chan-
nels. As the pace of these developments continues to grow rapidly, it is imperative to have fast, flexible tools
supporting the analysis of neural data gathered by such large-scale modalities. Here we introduce GhostiPy
(general hub of spectral techniques in Python), a Python open source software toolbox implementing various
signal processing and spectral analyses including optimal digital filters and time—frequency transforms.
GhostiPy prioritizes performance and efficiency by using parallelized, blocked algorithms. As a result, it is able
to outperform commercial software in both time and space complexity for high-channel count data and can
handle out-of-core computation in a user-friendly manner. Overall, our software suite reduces frequently en-
countered bottlenecks in the experimental pipeline, and we believe this toolset will enhance both the portabil-

ity and scalability of neural data analysis.

Key words: local field potential; oscillations; signal processing; spectral analysis

(s

ignificance Statement

Because of technological innovation, the size of neural recordings has increased dramatically, but down-
stream analysis code is often not optimized to handle such large scales of data efficiently. Here we have de-
veloped GhostiPy, an open source Python package prioritizing performance and efficiency for large data in
the context of typical spectral analysis and signal processing algorithms. Users can control hardware re-
source consumption (e.g., system memory) by setting the level of parallelization and enabling out-of-core
processing. Thus, algorithms can be run on a variety of hardware, from laptops to dedicated computer serv-
\ers. Overall, GhostiPy improves experimental throughput by increasing the portability of analyses. /

~

Received May 5, 2021; accepted August 31, 2021; First published September

23, 2021.

The authors declare no competing financial interests.

Author contributions: J.P.C. and C.T.K. designed research; J.P.C. performed
research; J.P.C. and C.T.K. analyzed data; J.P.C. and C.T.K. wrote the paper.

The development of GhostiPy was supported by the National Science
Foundation (Grant NSF CBET1351692) and the National Institute of
Neurological Diseases and Strokes (Grant R01-NS-115233).

Acknowledgements: We thank Shayok Dutta (Rice University), Andres
Grosmark and Gyorgi Buzsaki (NYU, New York, NY), Loren Frank and Mattias
Karlsson (UCSF), and the CRCNS.org data archive for sharing data used in
example analyses.

Correspondence should be addressed to Caleb T. Kemere at caleb.
kemere@rice.edu.

https://doi.org/10.1523/ENEURO.0202-21.2021
Copyright © 2021 Chu and Kemere
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

November/December 2021, 8(6) ENEURO.0202-21.2021 1-10

Introduction

Advancements in neural recording technologies have
enabled the collection of large data in both space (high
density/channel count) and time (continuous recordings).
During subsequent analysis, the scale of the data induces
certain challenges that may manifest as the following sce-
narios: (1) analysis code takes a long time to complete
(high time complexity); and (2) code is unable to complete
because of insufficient memory on the hardware (high
spatial complexity). Moreover, the scientist may have diffi-
culty finding existing tools that address both 1 and 2 and
implement the desired analyses.

Although a potential remedy is to simply upgrade the
hardware, it is not an acceptable solution for scientists
desiring portability, an important component that im-
proves reproducibility and replicability. In more portable

https://orcid.org/0000-0003-2054-0234
https://doi.org/10.1523/ENEURO.0202-21.2021
mailto:caleb.kemere@rice.edu
mailto:caleb.kemere@rice.edu
https://doi.org/10.1523/ENEURO.0202-21.2021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

Open Source Tools and Methods 2 of 10

Table 1: Features implemented by GhostiPy compared with existing software

Python Overlap save convolution Multitaper method Hilbert transform CWT Synchrosqueezed transform Out-of-core

Ghostipy + + +
SciPy + + -
Chronux - - +
Elephant + + -
BrainStorm + + +
PyWt + - -
Field Trip - + +
MNE + + +
ssqueezepy + - -
MATLAB - + +

+ + O+ +
+ — - -—
+ —_ - -
+ + - -
— —+ —+ —_
+ + - -
+ + - -
+ + o+ -

systems, hardware resources may be limited (e.g.,
using a laptop at the airport). We thus took an alternate
approach by efficiently implementing analyses that
would trivially scale for different hardware configura-
tions. Our solution is GhostiPy (general hub of spectral
techniques in Python), a free and open source Python
toolbox that attempts to optimize both time and space
complexity in the context of spectral analyses. Methods
include linear filtering, signal envelope extraction, and
spectrogram estimation, according to best practices.
GhostiPy is designed for general purpose usage; while
well suited for high-density continuous neural data, it
works with any arbitrary array-like data object.

In this article, we first describe the software design prin-
ciples of GhostiPy to increase efficiency. We then elabo-
rate on featured methods along with code samples
illustrating the user friendliness of the software. Finally,
we benchmark our software against a comparable imple-
mentation, and we discuss strategies for working under
an out-of-core (when data cannot fit into system memory)
processing context.

Materials and Methods

An overview of implemented methods can be found in
Table 1. Excluding out-of-core support, it is possible to
use multiple different packages (OverLordGold Dragon,
https://github.com/OverLordGoldDragon/ssqueezepy/;
Bokil et al., 2010; Oostenveld et al., 2011; Gramfort et
al., 2013; Yegenoglu et al., 2015; Lee et al., 2019; Tadel
et al., 2019; Virtanen et al., 2020) to achieve the same
functionality. However, the mix-and-match approach
can reduce user friendliness since application program-
ming interfaces (APIs) differ across packages and de-
pendency management is more difficult. We believe our
unified package provides an attractive solution to this
challenge. Table 2 documents the methods currently
available in GhostiPy.

Software design considerations

As previously noted, successful completion of analy-
ses may be hampered by long computation times or
lack of system memory. Specifically, algorithmic time
and space complexity is a major determinant for the
efficiency and performance of a software method. In
general, it is difficult to optimize both simultaneously.
For example, time complexity may be reduced by

November/December 2021, 8(6) ENEURO.0202-21.2021

increasing hardware parallelization, at the expense
of higher space complexity (memory requirements).
While we sought to lower both kinds of complexity
compared with existing solutions, we gave space
complexity a higher priority. Stated concretely, slow
computation time is primarily a nuisance, but failure
to complete an analysis because of insufficient mem-
ory is catastrophic.

Our design decision to prioritize space complexity was
particularly critical because it directly influenced which
backend library we chose for the fast Fourier transform
(FFT), an operation used in the majority of the GhostiPy
methods. While investigating the different options, we
saw that numpy currently uses the pocketfft backend
(https://gitlab.mpcdf.mpg.de/mtr/pocketfft; Van Der Walt
et al., 2011). When accelerated with the Intel MKL library,
it can be slightly faster than FFTW (https://software.intel.
com/content/www/us/en/develop/tools/math-kernel-library/
benchmarks.html). However, we have found FFTW (Frigo

Table 2: Available methods in GhostiPy

Method
analytic_signall()

Description

Compute the analytic signal for
a real-valued signal

Compute the continuous wavelet
transform

Estimate number of taps needed
for an FIR filter

Filter data using an FIR filter

Design an FIR filter

Compute DPSS tapers

Get group delay of an FIR filter

Use the multitaper method to
generate a spectrogram

Use the multitaper method to
estimate a spectrum

cwt()
estimate_taps()

filter_data_fir()
firdesign()
get_tapers()
group_delay()
mtm_spectrogram()

mtm_spectrum()

plot_fourier_ Plot a spectrogram generated
spectrogram() from a Fourier-based method

plot_frequency_ Plot frequency response of a
response() transfer function

plot_wavelet_ Plot a spectrogram generated
spectrogram() from a wavelet-based method

signal_envelope() Estimate the envelope of a real-

valued signal
Estimate the instantaneous

phase of a real-valued signal
Compute the wavelet synchrosqueezed

transform

signal_phase()

wsst()

eNeuro.org

https://github.com/OverLordGoldDragon/ssqueezepy/
https://gitlab.mpcdf.mpg.de/mtr/pocketfft
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library/benchmarks.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library/benchmarks.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library/benchmarks.html

eMeuro

a

-
(V)

—umpy
4 — fftw 1 thread
— = fitw 2 threads

= fftw 4 threads

=
o

o
o©

<
~

<
o

Computation time (sec)
o
(e}

o
o

Data length (Megasamples)

Open Source Tools and Methods 3 of 10
b
10001
— —numpy
g —— fftw 1 thread
2 8001 —— w2 threads
% = fftw 4 threads
a 6001
>
g 4004
@
S
5 2001
o}
[al
0 T v \
0 5 10 15

Data length (Megasamples)

Figure 1. GhostiPy uses fftw rather than numpy for its FFT backend. a, b, Note that when fftw is multithreaded, the computation

time can be reduced (a) without an increase in memory use (b).

tw = 2
p=2
fs = 30000

numtaps = gsp.estimate_taps(fs, tw)

band_edges = [4, 6, 10, 12]
desired = [0, 1, 1, 0]

theta_filter = gsp.firdesign(numtaps, band_edges, desired,

fs=fs, p=p)

numtaps = gsp.estimate_taps(fs, tw)
band_edges = [10, 12, 55, 60, 100, 150, 200, 250, 300, 350]

desired = [1,0, 0, 1,

1; 0 O 1y 1 0]

arbitrary_filter = gsp.firdesign(numtaps, band_edges, desired,

Theta band
1.00+

0.75+4
0.50+4

0.25+4

Magnitude Response

0.00+4

0 2 4 6 8 10 12 14 16

fs=fs, p=p)

b
1.00 T

Arbitrary bands

0.75+4

0.5041%9 JT

0.25+4

0.004— .
0 100

200 300 400

Frequency (Hz)

Figure 2. FIR filter design. a, A theta-band filter designed for full bandwidth data. The specification of the transition bands allows for
easy determination of critical frequencies. The —6 dB points are exactly the midpoints of the transition bands. b, Filters with arbitrary

pass and stop bands may also be designed.

and Johnson, 1998, 2005) to be superior for memory
management and better suited for FFTs of arbitrary length,
including prime and odd numbers. An additional benefit of
FFTW was its multithreaded capabilities (Fig. 1). We there-
fore selected FFTW as our FFT backend.

To lower space complexity, we used blocked algo-
rithms, including overlap save convolution, which is not
offered in any of the standard Python numerical com-
puting libraries such as numpy or scipy (Van Der Walt
et al.,, 2011; Virtanen et al., 2020). This approach

November/December 2021, 8(6) ENEURO.0202-21.2021

enabled us to process very large data that could not fit
in memory (also known as out-of-core processing).
Throughout our code, we also used other strategies
such as in-place operations.

To lower the time complexity, we used efficient lengths
of FFTs wherever possible, and we leveraged modern
computing hardware by parallelizing our algorithms. For
example, a wavelet transform can be trivially parallelized
since the transform for each scale is not dependent on
other scales.

eNeuro.org

eMeuro

psds = []

bandwidths = [10, 15, 20, 25]
for bandwidth in bandwidths:

Open Source Tools and Methods 4 of 10

psd, fregs = gsp.mtm_spectrum(ripple_data,

psds. append (psd)

d

a : .
2000 Bandwidth: 10 Hz
15004
10004
500+
N
T 0- ¥ ~— . —
a 100 200 300 400 500
<c .
(2] .
27 5000 Bandwidth: 20 Hz
=)
1500+
1000+
500+
0= - 7 ; .
100 200 300 400 500

£s=1250,
n_fft_threads=8,
bandwidth=bandwidth)

2000 Bandwidth: 15 Hz
15004
10004

5001

100 200 300
Bandwidth: 25 Hz

400 500

20001
15001
10001

5001

0 v v T v 4
100 200 300 400 500

Frequency (Hz)

Figure 3. Multitapered spectra. Data are from a sharp wave ripple event, where energy occurs mainly between 100 and 250 Hz. a-
d, Bandwidths are 10Hz (a), 15Hz (b), 20Hz (c), and 25 Hz (d). Note in the code that the data-sampling rate is 1250 Hz, the FFT is
parallelized across eight threads, and ripple_data are a 1D numpy array.

Finite impulse response filter design

GhostiPy provides classical signal processing capabil-
ities such as filtering data, using the efficient overlap save
convolution. Filtering data is a ubiquitous operation, but
before this stage, the filter must itself be designed. While
this step may appear somewhat trivial, it can make a sig-
nificant difference, including the very existence of theta-
gamma phase amplitude coupling (Canolty et al., 2006;
Dvorak and Fenton, 2014).

Existing packages such as scipy and MNE offer a vari-
ety of finite impulse response (FIR) filter design methods
(Gramfort et al., 2013; Virtanen et al., 2020). However,
some methods suffer from the following issues. (1) Using
the least-squares method, a solution may result in a filter
with a magnitude response effectively of zero throughout.
This situation is more common when designing filters with
passband relatively low compared with the sampling rate.
(2) Using the Remez exchange method, the algorithm may
simply fail to converge. (3) Using the window method, the
transition bands cannot be controlled exactly, and opti-
mality cannot be defined, as is the case for the least-
squares (L2 optimal) and Remez exchange (L1 optimal)
methods.

Therefore, the GhostiPy filter design uses the method
defined in the study by Burrus et al. (1992) for the fol-
lowing reasons: (1) it is simple to design, and the

November/December 2021, 8(6) ENEURO.0202-21.2021

computational complexity is similar to that of a window
method and can be implemented on embedded hard-
ware if desired; (2) optimality can be defined, as it is op-
timal in the L2 sense; (3) transition bands can be
defined exactly, and the steepness of the passband
rolloff can be controlled by the spline power parameter;
and (4) the filter impulse response can be defined ana-
lytically. Consequently, its computation does not suffer
from the failure modes of the least-squares or Remez
exchange methods, as those must solve systems of lin-
ear equations. In other words, the design process is re-
liable and stable.

This method designs a low-pass filter according to the
following:

_sin(won) [sin(An/p)]®
hin) = mn [An/p } M
wo:w2+w1 A= w; — wy, @

2)

where w4 and w, are radian frequencies defining the tran-
sition-band boundaries.

GhostiPy uses the low-pass filter defined in Equation
1 as a prototype to design more complicated filters. As

eNeuro.org

eMeuro

import scipy.signal as sig

fs = 1250
nperseg = 64
noverlap = 16
w =25

f_spect, t_spect, psd_spect

psd_mtm, f_mtm, t_mtm

coefs_cwt, _, f_cwt, t_cwt, _

coefs_wsst, _, f_wsst, t_wsst, _

psd_cwt = np.abs(coefs_cwt)**2 /
psd_wsst = np.abs(coefs_wsst)**2 /

fs

Open Source Tools and Methods 5of 10

sig.spectrogram(data, fs=fs,

nperseg=nperseg,
noverlap=noverlap)

gsp.mtm_spectrogram(data, w, fs=fs,

nperseg=nperseg,
noverlap=noverlap)

gsp.cwt(data, fs=fs,
freq_limits=[1, 500])
gsp.wsst(data, fs=fs,
freq_limits=[1, 500],
voices_per_octave=32)

fs

400 Scipy Spectrogram e MT Spectrogram P
300 08 a 08 o
0.6 23 0.6 %
200 b I
0.4 g 0.4 g
= 100 02 2 02 2
;E; 0 0.0 0.0
2 0.1 02 03 01 02 03
C
% CWT Spectrogram iy SST Spectrogram o
[0 . 5
w 08 a 08 A
(2 (7]
o o
0.6 § 0.6 §
0.4 g 0.4 Té
o (o]
02 =2 02 =
0 0.0 0 0.0
00 01 02 03 0.0 01 02 03
Time (sec)

Figure 4. Time—frequency decompositions. a-c, Users can leverage the scipy spectrogram (a) along with the methods of GhostiPy
(b—d) for a richer understanding of their data. The synchrosqueezed transform in d gives the overall sharpest time and frequency resolu-
tion. Note in the code that data are a 1D numpy array, fs is the sampling rate, nperseg is the spectrogram window size in samples, nover-
lap is the number of samples overlapping in adjacent windows, and w is the bandwidth for the multitapered spectrogram.

a result, users can request filters with arbitrary magni-
tude response. An example is shown in Figure 2.

Multitaper method

Users often wish to perform a spectral decomposition
on a signal of interest. This can be accomplished by using
the multitaper method (Thomson, 1982; Percival and
Walden, 1993). The technique is well suited to reduce the
variance of a spectrum estimate, which is particularly use-
ful when working with noisy neural data. The spectrum es-
timate is obtained as an average of multiple statistically
independent spectrum estimators for a discrete signal, x
[n], with sampling frequency fs, as follows:

~ mt 1 L ~ mt
Sy (k) :ZZSLW(I() 3)
=1

November/December 2021, 8(6) ENEURO.0202-21.2021

~ mt 1 N1)
Siw(k) = 7 ZV/,W[”]X[H]G’Z’”’("/N. @)
S n=0

Given the length of data N and a smoothing half-band-
width W, the tapers v, w[n] are computed by solving for
vectors that satisfy the energy and orthogonality proper-
ties, as follows:

N-1
VLw{n}VLm/U7}:: 1 (5)
n=0
N-1
V/ﬁw[n]mew[n] = 0,/ 7é m. (6)

3
Il
o

For the tapers, GhostiPy uses the discrete prolate
spheroidal sequences (DPSSs), which satisfy Equations
5 and 6 and maximize the power in the band [- W,W]

eNeuro.org

Open Source Tools and Methods 6 of 10

eMeuro

Speed
(cm/s)

250

200

150

100

Frequency (Hz)

50

—500 WW
274.0 2745 275.0 275.5 276.0 276.5 277.0 277.5 278.0 278.5
Figure 5. CWT spectrogram of LFP. Spectrogram of local field potential recordings from area CA1 of the hippocampus of a rat dur-
ing a 5 min exploration (middle), with movement speed (top) and the raw electrophysiological signal (bottom). A number of features
of the hippocampal rhythms can be noted in this example, including the pervasive theta oscillation (~8 Hz), theta-nested gamma os-

cillations (~60Hz) during movement, and, toward the end, a sharp wave ripple (~200Hz). Morse wavelets (y = 3, B = 10) were
used, and frequencies were limited to [1, 250] Hz.

Q
T

Novel Environment Familiar Environment

300 1.0 300 1.0
250 250
N
I 200 0.5 T 200 0.5
() ()
3 5 0 5
GCJ 150 % 5 150 3
o N3 N
@ 100 0.0 @ 100 0.0
. [V
50 50
-0.5 -0.5

02505 1 2 4 8 16
Speed (cm/s)

02505 1 2 4 8 16
Speed (cm/s)

Figure 6. Speed spectrogram. The multitaper spectrogram (bandwidth, 5 Hz) was computed with GhostiPy for nonoverlapping 0.5 s
time bins and then z scored for each frequency. Each time bin in the spectrogram was assigned to 1 of 21 logarithmically spaced
speed bins spanning 0.125-64 cm/s. a, b, The mean PSD for each speed bin is shown for an animal exploring a novel environment
(@) and a familiar environment (b).

(Thomson, 1982). An example for computing the multi-
tapered spectrum is shown in Figure 3.

W(a) = X(0)¥" (aw), ®)
for a given scale (a), where X and W are the Fourier trans-

forms of x and ¢, respectively.

Continuous wavelet transform

Neuroscientists often use a continuous wavelet trans-
form (CWT) to study transient oscillatory activity. The
CWT itself is defined in the time domain by the following:

W(a,b) /f (t_b>x(t)dt, (7)

where i(...) is the mother wavelet function. The trans-
form represents a two-dimensional decomposition in
the scale (a) and time (b) planes. In the frequency do-
main, the CWT is given by the inverse Fourier trans-
form of the following:

November/December 2021, 8(6) ENEURO.0202-21.2021

Many mother wavelet functions have been investigated in
the literature, but we have focused on the analytic wavelets,
as they are found to be superior, particularly for estimating
the phase (Olhede and Walden, 2002; Lilly and Gascard,
2006; Lilly and Olhede, 2009, 2012. We have implemented
the analytic Morse, Morlet, and Bump wavelets, whose re-
spective frequency domain definitions are as follows:

¥(aw) = 26 @0 2H(p), €)

B

¥(aw) = 2<%7>7

(aw)’e @) H(w) (10)

eNeuro.org

eMeuro

180
1.0
10 i: 0.5
0.0
20
-m 0 n-m 0 n-mn 0 n-n 0 n

Theta phase (rad)

-
S
o o

Frequency (Hz)

[o)]
o

Figure 7. Theta cycle clustering. The Morse wavelet (y =3, B =
20) CWT was computed with GhostiPy using 81 frequencies
and was subsequently divided into multiple windows, where
one window corresponded to one theta cycle. Each CWT sam-
ple in a window was assigned to 1 of 20 phase bins according
to the instantaneous theta phase at that particular sample. The
result was frequency-phase power profiles, which were then
clustered into four clusters. Shown is the mean frequency-
phase power profile for each cluster. As in Zhang et al., 2019,
these use the hc-11 dataset from CRCNS.org (Grossmark and
Buzaki, 2016, Grossmark et al., 2016).

— -1
Y(aw) = 2e"(1’(“7)2) 1 (uo)/a, (ot o) /2> (11)

where 1(,_q)/a (u+o)/a 1S the indicator function for the inter-
val (u—o)/a < w < (u + o) /a and H(w) is the Heaviside
step function. In our implementation, we use Equation 8
to compute the CWT.

Note that in practice the timeseries x(t) is sampled, and
the CWT is likewise sampled. Then Equation 8 becomes a
pointwise complex multiplication of discrete Fourier
transforms, where the discretized angular frequencies wy
are determined by the following:

27k
Wi = NAE’ (12)
where N is the number of data samples and At is the sam-

pling interval.

A naive implementation of the wavelet transform (Eq. 8)
calculates untruncated wavelets the same length as the
input data. This is often inefficient because it is equivalent
to convolving the data with a time-domain wavelet, mainly
consisting of leading and trailing zeros. In our approach,
we exploit the fact that wavelets are finite in time and fre-
quency, and we use an overlap-save algorithm to com-
pute the CWT purely in the frequency domain. Note that
the latter point is particularly critical: because of the Gibbs
phenomenon, using any time-domain representation of
the wavelet may violate numerical analyticity for wavelet
center frequencies near the Nyquist frequency. It is
therefore necessary to use only the frequency domain
representation of the wavelet. While we offer both tra-
ditional/naive and blockwise convolution implementa-
tions, the latter will give superior performance for
longer-duration data. We believe that this is a valuable

November/December 2021, 8(6) ENEURO.0202-21.2021

Open Source Tools and Methods 7 of 10
option for researchers and that this is the first tool that
uses blockwise convolution to implement the CWT.

For electrophysiological data, a typical wavelet anal-
ysis will require computing Equation 8 for 50-500
scales. This is an obvious candidate for parallelization
since the wavelet transform for each scale can be
computed independently of the others. We use a back-
end powered by Dask to carry out the parallelization
(Rocklin, 2015). Users can set the number of parallel
computations to execute and thereby leverage the
multicore capabilities offered by modern computing
hardware.

Synchrosqueezing transform

One disadvantage of the wavelet transform is that its
frequency resolution decreases as the temporal reso-
lution increases. Strictly speaking, the CWT results in
information contained in the (time, scale) plane, but a
single frequency is typically assigned to each scale.
Regardless, spectral smearing can be observed at
higher frequencies/lower scales. However Daubechies
(1996) and Thakur et al. (2013) showed the synchros-
queezing transform (SST) could mitigate this issue by
transferring a CWT (time, scale) plane information to
the (time, frequency) plane.

The synchrosqueezing transform proceeds as follows.
For every scale a: compute the CWT W(a) using Equation

8, compute the following partial derivative:
W) =joX(w)¥(aw), (13)

and compute the following phase transform:

(38)

ws(a) = (14)

The phase transform contains the real frequencies each
point in the CWT matrix should be assigned to. In prac-
tice, the real frequency space is discretized, so the CWT
points are assigned to frequency bins. Note that multiple
CWT points at a given time coordinate, b, may map to the
same frequency bin. In this situation, a given frequency
bin is a simple additive accumulation of CWT points.

Note the similarity of the SST to the spectral reassign-
ment algorithms in the studies by Gardner and Magnasco
(2006) and Fitz and Fulop (2009). However, an important
distinction is that the SST only operates along the scale
dimension. In addition to preserving the temporal resolu-
tion of the CWT, this makes SST data easy to work with
since uniform sampling can be maintained.

Overall, the spectrogram methods implemented by
GhostiPy give an experimenter a more complete picture
of the time-varying spectral content of neural data. Figure
4 illustrates this using the scipy standard spectrogram
method along with the GhostiPy methods.

Data availability
The code/software described in the article is freely avail-
able online at https://github.com/kemerelab/ghostipy/.

eNeuro.org

https://github.com/kemerelab/ghostipy/

eMeuro

—— MATLAB

(o]
o

= Ghostipy

(=2}
o

Computation time (sec)
N B
o o

o

0.0 2.5 5.0 7.5 10.0
Data length (Megasamples)

12.5

Open Source Tools and Methods 8 of 10

b

@ 30000

B

—— MATLAB
= Ghostipy

20000

10000

Peak memory usage (M

0.0 2.5 5.0 7.5 10.0
Data length (Megasamples)

12.5

Figure 8. CWT implementation performance. a, b, Our implementation of the Morse continuous wavelet transform outperforms
MATLAB in both time (a) and space complexity (b). Note that MATLAB was unable to complete execution for the full range of the
test parameter (data length) because of out-of-memory exceptions. The test machine was an Intel Core i7-4790 (eight hyperthreads)
equipped with 32 gigabytes of RAM. In both cases, the CWT was parallelized over available CPU threads.

Jupyter Notebook, which can be found at https://github.com/
kemerelab/ghostipy/tree/master/examples/2021paper, was
used to produce the figures. The code and notebooks are
also available as Extended Data 1 and Extended Data 2. All re-
sults were obtained on an Intel Core i7-4790 desktop com-
puter running the Ubuntu 16.04 operating system.

Results

Example analyses

An example spectrogram of local field potentials recorded
in area CA1 of the rat hippocampus is depicted in Figure 5.
Clearly apparent are the theta oscillation, theta-nested
gamma oscillations, and a sharp wave ripple, which occurs
after the animal has stopped moving.

In addition, GhostiPy can be used as an intermediate for a
multistep analysis. Figure 6 replicates the speed spectrogram
analysis in the study by Kemere et al. (2013) for an animal ex-
ploring a novel and a familiar environment (Mattias et al.,
2015). Figure 7 implements the clustering of theta cycles
(Zhang et al., 2019) with Morse wavelets. We have also in-
cluded notebooks to replicate these example analyses.

Performance and complexity

The calculation of the CWT is computationally intensive
and consequently a good method to benchmark perform-
ance. Of the software packages listed in Table 1, only
MATLAB offered an equivalent solution. It was thus cho-
sen as the reference to compare our implementation
against. Figure 8 shows that our implementation results in
faster computation times and better memory usage.

It is not entirely clear what accounts for the higher jag-
gedness in the MATLAB curves from Figure 8. A possible
explanation is that the FFT computation is less efficient
for an odd-length transform, but the magnitude of the
spikes in the curve is surprising given that the FFT back-
end of MATLAB also uses FFTW. Regardless, we have dem-
onstrated that our implementation is able to achieve lower
time and space complexity. When using the functionality of-
fered by GhostiPy, the following three primary scenarios
arise with regard to the sizes of data involved in the process-
ing: (1) both the input and output data fit into core memory;

November/December 2021, 8(6) ENEURO.0202-21.2021

(2) the input fits into core memory, but the output does not;
and (3) neither the input nor the output fit.

In all of the previous examples, we have restricted our-
selves to case 1. However, with the ever-increasing sizes
of data, the other cases will inevitably be encountered.
Case 2 may arise when attempting to generate spectro-
grams. As the input is a single channel, memory constraints
are rarely an issue. For example, even a 10 h local field po-
tential (LFP) recording sampled at 1 kHz and saved as 64 bit
floating point values will require <300 mebibytes (MiB) of
memory. However, the size of a wavelet spectrogram com-
puted from these data will be directly proportional to the
number of scales/frequencies. For a typical range of 1-
350 Hz at 10 voices per octave, this amounts to a space re-
quirement of 85 times that of the input data. Given that this
can well exceed the core memory size of a machine, the
GhostiPy CWT routine can also accept a preallocated out-
put array that is stored on disk (Fig. 9).

Case 3 may arise when a user wishes to filter many chan-
nels of full bandwidth data. One case used is a 1 h recording
for a 256-channel probe sampled at 30 kHz and stored as a
2 byte signed integer type; already this requires 51 gibi-
bytes. Our strategy is similar to case 2, where an output
array is allocated and stored on disk. As for the input, it is
read in chunks, and the size of these can be chosen to
lower memory usage, although potentially at a cost to com-
putation time. The code in Figure 10 illustrates an example.

Several points can be made about the scheme in Figure
10. Our method allows for downsampling during the convo-
lution, which can reduce the number of stages in a compu-
tational scheme. Given full bandwidth data, a traditional
strategy to filter to the theta band would look like the follow-
ing: (1) apply an antialiasing filter; (2) downsample to obtain
LFP; (3) store the LFP to disk; (4) apply a theta-band filter; (5)
downsample this output; and (5) save the result.

Using the GhostiPy method, it is not necessary to gener-
ate the intermediate LFP. To our knowledge, we do not
know of other software that allows out-of-core filtering and
downsampling in a single function call. The result is a simul-
taneous reduction in time and space complexity, by storing
only the downsampled result and by filtering only once.
Filtering to the theta band is now simplified to the following

eNeuro.org

https://github.com/kemerelab/ghostipy/tree/master/examples/2021paper
https://github.com/kemerelab/ghostipy/tree/master/examples/2021paper
https://doi.org/10.1523/ENEURO.0202-21.2021.ed1
https://doi.org/10.1523/ENEURO.0202-21.2021.ed2

eMeuro

Open Source Tools and Methods 9 of 10

with hbpy.File(output_filepath, ’w’) as outfile:

shape, dtype = gsp.cwt(data, £fs=1250, freq_limits=[1, 350],
describe_dims=True)

cwt_data = outfile.create_dataset(’cwt_data’, shape=shape,

dtype=dtype)

gsp.cwt(data, fs=fs, freq_limits=[1, 350],

cwt_out=cwt_data)

Figure 9. CWT out-of-core. Example code when the output array is too large for main memory. The CWT method is first executed
as a dry run to compute the necessary array sizes. Here data are a 1D numpy array, and cwt_data are an HDF5 array created to

store the results to disk.

import hbpy
with h5py.File(input_filepath,

with hbpy.File(output_filepath,

ds = 300
K = filter_delay

N = infile[’chdata’].shapel[1]

’r’) as infile:
‘w’) as outfile:

shape, dtype = gsp.filter_data_fir(infile[’chdata’],

theta_filter,

axis=1,

ds=ds,
output_index_bounds=[K, K+N],
describe_dims=True)

outdata = outfile.create_dataset(’theta_data’,

shape=shape,
dtype=dtype)

gsp.filter_data_fir(infile[’chdata’],
theta_filter,

axis=1,

ds=ds,

output_index_bounds=[K, K+N],
outarray=outdata)

Figure 10. Filtering out-of-core. Filtering data from a large array stored on disk and likewise storing the output on disk. Similar to
the CWT out-of-core features, the method is called once as a dry run to compute array sizes, which the user can then pass in to
store the result. The filtering method also allows to correct for the delay of the filter and to downsample without storing any interme-
diate results. Although the example uses the h5py library, any object that behaves like an array can be used. Here ds is the down-
sampling factor, K is the filter group delay, N is the number of samples, infile['chdata’] is a (n_channels, n_samples) array, and

outdata is an HDF5 array.

steps: (1) apply a theta filter to the full bandwidth data; (2)
downsample the result; and (3) save the result to disk.

Discussion

We have described the key features of GhostiPy and
given examples of its ease of use to perform computa-
tions efficiently. Users can thus conduct exploratory
spectral analyses quickly across a range of parameters
while reducing their concerns for running out of memory,
especially since out-of-core computation is supported for
many of the methods. Thus, we believe GhostiPy is well
suited to handle the ever-increasing size of experimental
data.

In the future, we plan to improve GhostiPy with various en-
hancements. For example, currently the methods are de-
signed to offer the user a lot of low-level control over areas
such as multithreading, and to work with raw array types.
However, users may desire a higher-level API. For this rea-
son, we believe it would be a worthwhile endeavor to incor-
porate our work into frameworks such as NWB (Teeters et
al., 2015); this would also facilitate more widespread
adoption. There are also other analyses we could

November/December 2021, 8(6) ENEURO.0202-21.2021

implement, including the adaptive multitaper method
(Percival and Walden, 1993) and other time—frequency re-
assignment techniques similar to the synchrosqueezing
transform (Daubechies et al., 2016).

Our primary contribution is improving the ease and speed
at which data analysis can be conducted by developing
user-friendly software implementing efficient algorithms well
suited for large data sizes. This point is specifically demon-
strated by our ability to outperform existing solutions in
space and time complexity, and to run computations even
in out-of-core memory conditions, which enables machines
with 1-10 s of of GBs of memory to process data on the
scale of 10-100 s of GBs and higher. In these ways, we
have increased the accessibility of neural data analysis by
enabling it to be run on hardware such as a laptop com-
puter, a scenario that often was not previously possible.

Finally, the software we developed has a much larger
potential impact than the scope described in this article.
Although many of the examples given in this article were
specific to extracellular rodent hippocampal data, the func-
tionality we implemented is intentionally generic and

eNeuro.org

eMeuro

applicable to many fields. As an example, our code can eas-
ily be adapted for use in real-time processing, whether run-
ning on embedded hardware or on a laptop computer in a
clinical EEG setting. Given the functionality already devel-
oped and the full scope of our work, we are optimistic that
GhostiPy can help accelerate modern scientific progress.

References

Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP (2010) Chronux:
a platform for analyzing neural signals. J Neurosci Methods
192:146-151.

Burrus CS, Soewito AW, Gopinath RA (1992) Least squared error FIR
filter design with transition bands. IEEE Trans Signal Process
40:1327-1340.

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch
HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power
is phase-locked to theta oscillations in human neocortex. Science
313:1626-1628.

Daubechies | (1996) A nonlinear squeezing of the continuous wavelet
transform based on auditory nerve models. In: Wavelets in medi-
cine and biology (Aldroubi A, Unser MA, eds), pp 527-546. Boca
Raton, FL: CRC.

Daubechies |, Wang Y, Wu H-t (2016) ConceFT: concentration of fre-
quency and time via a multitapered synchrosqueezed transform.
Phil Trans R Soc A 374:20150193.

Dvorak D, Fenton AA (2014) Toward a proper estimation of phase—
amplitude coupling in neural oscillations. J Neurosci Methods
225:42-56.

Fitz KR, Fulop SA (2009) A unified theory of time-frequency reassign-
ment. arXiv:0903.3080.

Frigo M, Johnson SG (1998) FFTW: an adaptive software architecture
for the FFT. In: Proceedings of the 1998 IEEE International confer-
ence on acoustics, speech and signal processing: ICASSP’98: May
12-15, 1998, Washington state convention and Trade Center,
Seattle, WA (USA), Vol 3, pp 1381-1384. Piscataway, NJ: IEEE.

Frigo M, Johnson SG (2005) The design and implementation of
FFTW3. Proc |IEEE 93:216-231.

Gardner TJ, Magnasco MO (2006) Sparse time-frequency represen-
tations. Proc Natl Acad Sci U S A 103:6094-6099.

Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck
C, Goj R, Jas M, Brooks T, Parkkonen L, Hamaldinen M (2013) MEG
and EEG data analysis with MNE-Python. Front Neurosci 7:267.

Grosmark AD, Buzséki G (2016) Diversity in neural firing dynamics
supports both rigid and learned hippocampal sequences. Science
351:1440-1443.

Grosmark AD, Long J, Buzséaki G (2016) Recordings from hippocam-
pal area CA1, PRE, during and POST novel spatial learning.
CRCNS.org. http://dx.doi.org/10.6080/K0862DC5.

Kemere C, Carr MF, Karlsson MP, Frank LM (2013) Rapid and contin-
uous modulation of hippocampal network state during exploration
of new places. PLoS One 8:e73114.

November/December 2021, 8(6) ENEURO.0202-21.2021

Open Source Tools and Methods 10 of 10

Lee G, Gommers R, Waselewski F, Wohlfahrt K, O’Leary A (2019)
PyWavelets: a Python package for wavelet analysis. J Open
Source Softw 4:1237.

Lilly JM, Gascard J-C (2006) Wavelet ridge diagnosis of time-varying
elliptical signals with application to an oceanic eddy. Nonlin
Processes Geophys 13:467-483.

Lilly JM, Olhede SC (2009) Higher-order properties of analytic wave-
lets. IEEE Trans Signal Process 57:146-160.

Lilly JM, Olhede SC (2012) Generalized Morse wavelets as a superfam-
ily of analytic wavelets. IEEE Trans Signal Process 60:6036-6041.

Mattias K, Margaret C, Frank LM (2015) Simultaneous extracellular
recordings from hippocampal areas CA1 and CA3 (or MEC and
CAT1) from rats performing an alternation task in two W-shapped
tracks that are geometrically identically but visually distinct.
CRCNS.org. Available at http://dx.doi.org/10.6080/KONK3BZJ.

Olhede SC, Walden AT (2002) Generalized morse wavelets. |IEEE
Trans Signal Process 50:2661-2670.

Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open
source software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput Intell Neurosci 2011:156869.

Percival DB, Walden AT (1993) Spectral analysis for physical applica-
tions. Cambridge, UK: Cambridge UP.

Rocklin M (2015) Dask: parallel computation with blocked algorithms
and task scheduling. In: Proceedings of the 14th Python in science
conference (SCIPY 2015), Vol 126 (Huff K, Bergstra J, eds). Austin,
TX: SciPy Developers. [10.25080/Majora-7b98e3ed-013]

Tadel F, Bock E, Niso G, Mosher JC, Cousineau M, Pantazis D,
Leahy RM, Baillet S (2019) MEG/EEG group analysis with brain-
storm. Front Neurosci 13:76.

Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari
H, Peron S, Li N, Peyrache A, Denisov G, Siegle JH, Olsen SR,
Martin C, Chun M, Tripathy S, Blanche TJ, Harris K, Buzséaki G,
Koch C, et al. (2015) Neurodata without borders: creating a com-
mon data format for neurophysiology. Neuron 88:629-634.

Thakur G, Brevdo E, Fuckar NS, Wu H-T (2013) The synchrosqueez-
ing algorithm for time-varying spectral analysis: robustness prop-
erties and new paleoclimate applications. Signal Processing
93:1079-1094.

Thomson DJ (1982) Spectrum estimation and harmonic analysis.
Proc IEEE 70:1055-1096.

Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a
structure for efficient numerical computation. Comput Sci Eng
13:22-30.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T,
Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J,
van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson
ARJ, Jones E, Kern R, Larson E, Carey CJ, et al. (2020) SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nat
Methods 17:261-272.

Yegenoglu A, Holstein D, Phan LD, Denker M, Davison A, Grun S (2015)
Elephant-open-source tool for the analysis of electrophysiological
data sets. Tech Rep Computational and Systems Neuroscience.
Available at https://juser.fz-juelich.de/record/255984.

Zhang L, Lee J, Rozell C, Singer AC (2019) Sub-second dynamics of
theta-gamma coupling in hippocampal CA1. eLife 8:e44320.

eNeuro.org

http://dx.doi.org/10.1016/j.jneumeth.2010.06.020
https://www.ncbi.nlm.nih.gov/pubmed/20637804
http://dx.doi.org/10.1109/78.139239
http://dx.doi.org/10.1126/science.1128115
https://www.ncbi.nlm.nih.gov/pubmed/16973878
http://dx.doi.org/10.1098/rsta.2015.0193
http://dx.doi.org/10.1016/j.jneumeth.2014.01.002
https://www.ncbi.nlm.nih.gov/pubmed/24447842
http://dx.doi.org/10.1073/pnas.0601707103
https://www.ncbi.nlm.nih.gov/pubmed/16601097
https://www.ncbi.nlm.nih.gov/pubmed/24431986
http://dx.doi.org/10.6080/K0862DC5
http://dx.doi.org/10.1371/journal.pone.0073114
https://www.ncbi.nlm.nih.gov/pubmed/24023818
http://dx.doi.org/10.21105/joss.01237
http://dx.doi.org/10.5194/npg-13-467-2006
http://dx.doi.org/10.1109/TSP.2008.2007607
http://dx.doi.org/10.1109/TSP.2012.2210890
http://dx.doi.org/10.6080/K0NK3BZJ
http://dx.doi.org/10.1109/TSP.2002.804066
https://www.ncbi.nlm.nih.gov/pubmed/21253357
http://dx.doi.org/10.3389/fnins.2019.00076
https://www.ncbi.nlm.nih.gov/pubmed/30804744
http://dx.doi.org/10.1016/j.neuron.2015.10.025
https://www.ncbi.nlm.nih.gov/pubmed/26590340
http://dx.doi.org/10.1016/j.sigpro.2012.11.029
http://dx.doi.org/10.1109/PROC.1982.12433
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1038/s41592-019-0686-2
https://www.ncbi.nlm.nih.gov/pubmed/32015543
https://juser.fz-juelich.de/record/255984
http://dx.doi.org/10.7554/eLife.44320

	GhostiPy: An Efficient Signal Processing and Spectral Analysis Toolbox for Large Data
	Introduction
	Materials and Methods
	Software design considerations
	Finite impulse response filter design
	Multitaper method
	Continuous wavelet transform
	Synchrosqueezing transform
	Data availability

	Results
	Example analyses
	Performance and complexity

	Discussion
	References

